jeudi 21 septembre 2017

AMIGA32

Le cas Amiga : je me souviens qu'au début des années 1990 il m'arrivait d'acheter une revue dont les sujets principaux étaient les systèmes informatiques dits 'alternatifs', qui avaient fait le bonheur de ma génération jusqu'à ce que le terrible PC écrase tout. Dans cette revue on y parlait de machines comme la série Next, de systèmes comme le BeOS, et évidemment des errements de la marque Amiga.



J'ai du cesser de rêver à ces machines accessibles vers 1993 lorsque que la saga Commodore fût définitivement morte. De toute ces belles (et parfois de vraiment moins belles) machines de la décennie 80, il ne reste plus aujourd'hui beaucoup de sujets actifs. Il existe bien quelques recréations de ZX80-ZX81, de Spectrum, de MSX le plus souvent en FPGA, mais pas grand chose de plus.

Des deux ordinateurs 13/32 bits de l'époque l'Atari ST eût sa petite heure de gloire à la fin des années 2000 avec la machine Suska, dont le firmware est toujours mis à jour :

https://www.experiment-s.de/en/boards/suska-iii-t/

Et plus actuellement le M.I.S.T. que je possède et qui fonctionne très bien, édité par LOTHAREK :

http://lotharek.pl/product.php?pid=186
Ces deux machines fonctionnent avec des émulation du processeur d'origine, à savoir un 680x0 quelconque et la majorité des périphériques, à l'intérieur d'un FPGA. La compatibilité avec le matériel d'origine est alors très élevée.

Une autre voie a été prise par le projet FireBee, débuté en 2008, qui a consisté à créer une machine 'compatible' avec l'Atari d'origine, en partant d'un processeur ColdFire MCF5474 capable d'émuler les instructions du 68000 d'origine, mais en impliquant quand même de grosses modifications logicielles :

http://firebee.org/fb-bin/index?lng=FR

J'ai pu assister à une démonstration de cette machine grâce à Vincent Rivière, développeur logiciel de la machine, qui en possédait un exemplaire. J'avais été très impressionné par le travail effectué. La machine est relativement chère et la partie soft est toujours activement en cours de développement. Il s'agit donc plus d'une machine pour gros passionnés de la programmation que d'un matériel apte à rendre de suite quelques services.

Ce sont les trois machines que je considère comme actuelles, naviguant dans la sphère de l'ancien ATARI ST.

Et à propos de l'Amiga? J'ai bien entendu parler des machines crées dans les années 90 et début 2000, mais n'ai jamais vraiment porté attention à ces réalisations. Hormis le Minimig dont j'ai entendu parler il y a quelques années de cela, pas grand chose.

Hors il semblerait que les choses changent actuellement de façon très dynamique, particulièrement grâce à l'entreprise Applo Accelerators, fabriquant des cartes accélératrices Vampires :

http://www.apollo-accelerators.com
Ces cartes accélératrices sont disponibles pour A600 et A500, avec une version A1200 prévue, et aussi et surtout, une version autonome qui rassemblerait tout le hard d'un Amiga sur une même carte, il s'agirait de la Vampire V4 :


Je n'ai pas tout suivi l'affaire Amiga mais il me semble que l'aspect logiciel n'est pas en reste non plus. Et vues les démos que sont capables d'effectuer ces cartes, il est légitime de penser que l'on se trouve en présence d'un vrai eco-système sur base Amiga.

Alors si vous souhaitez en savoir plus, il pourrait être intéressant de participer à l'évènement Amiga 32 qui se tiendra à Neuss en Allemagne le 28 octobre 2017 (j'ai déjà eu l'occasion dévoquer cet évènement ici ) :


Pour se procurer un billet, c'est ici : http://www.amiga32.de

Physiquement ca se trouve ici :


Cette fois, je me laisserais bien tenter ;-)

mercredi 20 septembre 2017

Recreating the Sequential Circuits Prophet VS.

Comme le titre le laisse à penser, j'ouvre ici un billet dont le sujet est la recréation totale du synthétiseur de Sequential Circuits, le Prophet VS.

Pourquoi? Parce que le Prophet VS est une machine assez intéressante. Parce que j'ai toujours estimé qu'elle n'avait pas été très bien conçue et que le concept pouvait 'sonner' un peu mieux. Parce que j'ai étudié il y a quelques années la faisabilité de la mise en FPGA de l'ensemble de la carte mère du Prophet VS, et que le résultat obtenu était pertinent. Que finalement, cela peut aussi être bien de mener à terme un projet qui m'a déjà occupé un bon paquet d'heures. Quant à faire mieux que les développeurs de l'époque chez Sequential Circuits : a voir...

'THE' Prophet VS

Le travail déjà effectué à consisté à implémenter dans une carte à base de FPGA, l'ensemble de la carte mère du VS :

La carte mère du Prophet VS.
Absolument tous les composants de cette carte sont émulés, sauf la gestion du clavier. Je n'ai d'ailleurs pas l'intention de m'attaquer à la gestion du clavier du VS sachant que je projette d'élaborer une version 'desktop' de ce synthétiseur.

Lors de mon étude précédente, je me suis arrêté à celle du circuit 'custom' responsable de la génération des formes d'ondes des oscillateurs. Je viens donc de m'attaquer à ce sujet important, car une fois ces quatre circuits 'décodés', il deviendra possible d'intégrer absolument toute la partie numérique de ce synthétiseur dans un gros circuit de type FPGA. Cela va encore demander un certain travail...


lundi 11 septembre 2017

A la découverte de l'automate UniPi Neuron S103-G (en live, c'est plus dynamique...)

Depuis quelques mois maintenant, des automates programmables développés sur une base Arduino sont disponibles sous diverses formes. Le phénomène se propage actuellement sur la technologie Raspberry Pi 3, à la faveur du portage par CODESYS de la norme 61131-3.
 
Le sujet de ce billet porte donc sur la mise en œuvre d'un PLC à base de PI 3 comportant de plus un module GSM. Le but en étant l'application à un cas concret.

La première chose à faire consiste donc à commander et à recevoir un PLC de type S103-G de chez UniPi :

Fraichement arrivé!
Fraichement déballé...
Sera-t-il aussi performant que le n°007?
Le n°4 de la ligne de production. N'est-ce pas un peu risqué? Pour le savoir, il ne reste plus qu'à rendre cet automate opérationnel. Pour cela, il est nécessaire tout d'abord de copier l'image du système Neuron sur une carte SD, puis de placer cette carte SD dans le S103G. L'opération est simple, elle consiste à récupérer l'image sur le site D'UniPi à cette adresse (version UniPian-Neuron-OS-2017-08-30), puis à la copier après l'avoir préalablement dézippée, sur une carte SD à l'aide du logiciel Win32 Disk Imager.

Carte SD avec OS validé.

Jusqu'ici, les opérations effectuées sont totalement triviales. A titre d'information, une version plus 'amateur' de ce concept peut être trouvé à cette adresse :

http://alltwincat.com/codesys/raspberry-pi-plc/
Une fois le S103G démarré sur sa carte SD, il reste encore à s'y connecter en réseau parce que la sortie HDMI n'est évidemment pas accessible. SSH est actif par défaut sur les distributions Raspbian dont semble être issu l'OS UniPian d'UniPi. Par contre, le protocole de boot par défaut utilise le DHCP via l'interface Ethernet. Quand tout l'environnement réseau fonctionne en WiFi, comme c'est le cas chez moi, la seule solution consiste à connecter ce S103G directement sur un des ports Ethernet du routeur réseau. Une fois cette connexion réalisée, l'accès au système est de suite possible en SSH avec le login root:unipi.

Avec en prime l'adresse MAC de la bête, afin de la configurer en statique dans le DHCP.
Passons aux choses sérieuses...

Pour programmer ce type d'automates il existe plusieurs possibilités. A la limite, des scripts en Python pourraient 'suffire'. Je pense néanmoins qu'il est plus judicieux d'utiliser l'environnement de programmation Mervis fourni par le constructeur, et compatible avec la norme 61131-3.  Il y a deux années de cela, j'ai eu l'occasion de programmer des automates à base de processeurs ARM qui utilisent cette norme de programmation et d'en constater la facilité de mise en oeuvre :

Configuration quelque peu artisanale, mais efficace!

Mervis fonctionne de la même façon que la solution Codesys. A savoir un runtime temps réel implémenté sur l'automate qui exécute le programme édité et 'compilé' sur un IDE fonctionnant dans mon cas sous Windows. Pour implémenter une solution Mervis, il convient donc de télécharger et d'installer sur la SDcard de l'automate, l'image du système contenant le runtime Mervis. Une fois fait, un ssh à l'adresse IP du PLC permet de se connecter au système Linux embarqué de la même façon que cela fût le cas avec le système Linux 'standard'.

La ou cela devient intéressant, c'est qu'une fois le logiciel de développement installé sur le PC, il devient possible de se connecter, via ce logiciel, directement au Neuron S103-G. Il 'suffit pour cela de demander l'ajout d'un contrôleur :


Et d'attendre que la recherche automatique ait eu lieu pour que l'automate soit reconnu depuis le réseau, wifi dans mon cas :


Une fois l'automate sélectionné et cette fenêtre validée, l'IDE Mervis est en mesure de montrer les détails du PLC nouvellement détecté :

Et voilà!
Allez, je renomme ce PLC en S103-G. Passons à l'étape suivante qui va consister à écrire le premier 'Hello World', à savoir faire clignotter une des sorties de ce PLC.

Pour l'instant le logiciel, bien qu'ayant reconnu le type d'automate en ligne, ne connait absolument rien des périphériques disponibles dans ce S103-G. Or, tous les périphériques sont accessibles VIA le protocole ModBus. Il est donc nécessaire de déclarer ce type de bus au sein de l'environnement de développement afin qu'il puisse converser normalement avec l'automate. Cela se faire de la façon suivante :


Puis dans le panneau propriété, de sélectionner le protocol ModBus. J'en ai aussi profité pour modifier le nom du 'channel' en l'appelant TcpModbus. A remarquer que cette liaison ModBus se fera sur le réseau Ethernet de la Pi3.


Ça n'est pas fini. Alors que le type d'automate a été déclaré précédemment, cette déclaration ne concerne pas la définition de ses périphériques qui demeurent encore inconnus par le logiciel de développement. Une procédure 'purement administrative' doit donc avoir lieu, qui consiste à déclarer tous les périphériques sous forme de variables utilisables dans les futurs programmes. Pour cela, il faut déclarer le type de 'device' attaché au bus ModBus, ce qui aura pour effet de générer les variables d'entrées/sorties associées :

Dans mon cas, il s'agit d'un modèle S10x.
Un fois ce 'device' de type S10x reconnu, il suffit de demander l'auto-génération des variables pour obtenir la liste de toutes les entrées/sorties disponibles dans l'automate :


Dans l'onglet 'View' du logiciel, il est possible de demander le panneau 'Variables Browser', pour obtenir comme on peut s'en douter, le panneau avec toutes les variables déclarées :


On est presque au bout. Je vais faire clignoter la LED 01 de l'automate, matérialisée par la variable $Neuron S10x_ULED_1.01$ dans le fichier des variables globales générées lors des opérations précédentes dans la rubrique 'generated' du type de variables 'Globals' du programme que j'ai nommé 'Mervis-Test' dans la partie 'Executable projects' de mon premier projet 'Mervis-Test'. L'esprit humain adore la hiérarchie ;-) ...

Dans ce projet, j'ai donc créé un source principal nommé 'Main'. Pour un début, je n'ai pas cherché l'originalité. Cela se fait facilement de la façon suivante :


Dès lors, il est possible de commencer à rentrer du code dans la partie d'édition dédiée. Le code est extrêmement 'complexe' puisqu'il s'agit de faire clignoter une seule LED à une fréquence d'à peu près le Hertz :

PROGRAM Main

VAR
   Delay : TON;
END_VAR

    Delay(IN:=TRUE, PT:=T#1S);
    IF NOT(Delay.Q) THEN
           RETURN;
    END_IF;

    Delay(IN:=FALSE);
    IF(hw.$Neuron S10x_ULED_1.01$ = FALSE) THEN
        hw.$Neuron S10x_ULED_1.01$ := TRUE;
    ELSE
        hw.$Neuron S10x_ULED_1.01$ := FALSE;
    END_IF;

END_PROGRAM

Je ne rentre pas dans les détails, notamment de la variable de type TON. Tout ce qui est écrit ici se trouve sur le Net. C'est l'avantage du langage à la norme 61131-3. Et pour plus de référence, il 'suffit' de rechercher les informations disponibles sur la toile avec le mot-clé Codesys puisque c'est l'entreprise de 'référence' en ce qui concerne ce langage. La compilation de ce source se passe sans problème.

Est-ce suffisant pour que cela fonctionne? Et bien NON!

Il est encore nécessaire de déclarer cette tâche au sein de l'automate en lui affectant un temps de fonctionnement. Il serait possible de discuter sur les raisons de cela, Il faut juste prendre conscience que sur un bus de type ModBus c'est toujours le Maître qui demande des 'choses'. Un périphériques ne peut JAMAIS interrompre un programme maître. Du coup, pour savoir ce qui se passe sur des entrées, par exemple, la seule solution consiste à faire du pooling sur l'entrée surveillée. C'est tout simplement cette notion de pooling, ou de fausse interruptions, qui est implémentée de la sorte de façon généralisée dans les automates. Cela reste évidemment extrêmement moins efficace que de la vraie gestion d'interruption processeur, mais c'est ainsi...

Un double 'click' sur l'automate permet de changer les icônes du bandeau supérieur du logiciel pour voir apparaître celui des Tâches. Il convient dès lors d'en ajouter une, en renseignant le programme concerné et le temps machine alloué, même si ce programme ne gère absolument aucune entrée :


Un 'clik droit sur l'automate pour demander un 'Full run' dans la rubrique 'PLC Operation' permet, après avoir déployé la solution, de démarrer 'réellement' la tâche et de constater le clignotement de la LED X1 sur le joli boitier bleu: magique!

A noter que lors de la mise sous tension du PLC, le programme démarre automatiquement après seulement quelques secondes de boot de la carte Pi3. On s'en serait douté, mais autant le confirmer.

lundi 21 août 2017

Drumulator : l'heure du remontage!


Cela fait un peu plus d'un an que je possède cette Drumulator. Je l'ai achetée en région parisienne pur un prix modique car elle présentait quelques défauts, notamment la présence du message 'bad' au démarrage. Ce message n'est pas bien grave puisqu'il indique juste que la batterie interne de sauvegarde des RAM statiques est arrivée en fin de vie. La réparation ne devait donc pas poser trop de problème.

J'ai déjà eu l'occasion de présenter cette boit à rythme. Il y a à peine plus d'un an, j'ai effectué quelques dépannages et expérimentations ici, et créé un outil de débogage basé sur l'émulation des bus d'un Z80 sous la forme d'un 'composant' compatible Arduino, avec la version définitive ici, en milieu d'article.

Version définitive à gauche, version de test à droite.
Je n'avais pas remonté cette machine parce qu'une personne rencontrée lors du MakerFaire de Nantes en juillet 2016 m'avait proposé de participer à une manifestation sur le thème du rétro et du hack. Bien évidemment, cette personne ne m'a jamais recontacté. J'ai donc décidé de terminer mon travail sur cette boîte.

Digression : Je n'ai pas participé au MakerFaire de Nantes 2017. Cela représente beaucoup de travail de préparation et des bénéfices quasiment nuls malgré un nombre incroyable de personnes passées me voir l'année dernière. En fait le principe est simple, il s'agit de travail offert aux organisateurs, seuls à tirer les bénéfices de votre présence. Et pour être plus clair, travail fourni pour la très grande cause du rayonnement de Nantes, dans le cas présent. Une fois ça va, pas deux! Fin de digression.

Le changement de pile a effectivement réglé le problème du message d'erreur au démarrage de cette Drumulator, après avoir toutefois effectué la procédure de RESET des mémoires. Tout s'est bien passé au remontage, sauf que le réel problème de cette machine est apparu lors des premières tentatives d'utilisation. Tout fonctionnait SAUF le potentiomètre de data. Les valeurs qu'il permettait d'obtenir allaient de 45 à 64 pour ce qui était du réglage du tempo, et ne permettaient pas de modifier les valeurs des volumes des différents sons!

Une petite étude du schéma de principe de la machine permet de cerner rapidement le problème :

Une façon possible de faire de la conversion analogique/numérique.
 Surtout quand on constates ce qui a été installé en guise de réparation :


Et oui, la réponse au problème est tout simplement écrite : 10K. Le potentiomètre utilisé certainement pour remplacer celui d'origine défaillant est un 10KOhms en lieu et place de ce qui devrait être un 100KOhms, comme indiqué sur le schéma de la machine. Et de suite il est possible de comprendre la façon dont la personne qui a (tenté d'effectuer) effectué la réparation s'y est prise.

Et pour commencer, tentons de trouver le même type de potentiomètre rectiligne en version 100KOhms. Si vous y arrivez, faites-moi signe. J'ai passé un temps suffisamment long sur Internet pour arriver à la conclusion que ce type de potentiomètre est introuvable aujourd'hui. Le temps passé à cette recherche, à lui seul, rend la réparation de cette Drumulator absolument pas rentable! En version 100KOhms, cela devait déjà être compliqué à trouver à l'époque, même si je ne sais pas quand à eu lieu cette réparation!

L'auteur de cette 'tentative' de réparation a du se dire que cela ne faisait rien et que ce 10KOhm fonctionnerait quand même. Après tout, ça n'est pas pour le courant consommé qui passe de 50µA à 500µA sous 5V. Certes, sauf que la méthode de mesure de la valeur de ce potentiomètre n'est pas effectuée par un convertisseur CAN 'habituel' qui relèverait la tension présente à son entrée, mais par le calcul du temps que met un condensateur à se charger. Et qui dit charge de condensateur dit quantité d'énergie, et donc courant de charge!

Pour faire simple, voici comme cela fonctionne : le circuit intégré 74ls221 est un monostable. C'est à dire qu'une impulsion sur une patte permet de changer l'état de sortie d'une autre patte pendant... un certain temps, puisque c'est un monostable et non pas un bistable. Le 'certain temps' est généré par
le condensateur chargé à travers une résistance. Il est possible de déterminer la durée de ce temps de basculement à partir du datasheet d'un des fabricants de ce type de circuit.

Le fonctionnement final se déduit donc très facilement : une impulsion négative sur la patte '1' du 74ls221 fait instantanément passer sa sortie Q (patte 13) à '1'. Cette sortie Q reste à '1' le temps de la prise en compte de la charge du condensateur, et revient toute seule à '0'.

Comme l'entrée de déclenchement /A du 74ls221 est générée par le programme de la Drumulator, le programme sait exactement le moment du début du déclenchement (remise à zéro du registre de comptage du CTC, voir plus bas). Pour trouver la fin du déclenchement, il suffit de surveiller le passage à '0' de la sortie Q du 74ls221. C'est le rôle dévolu au Z80 CTC qui est un timer/compteur. Ce composant est capable de compter des impulsions arrivant sur sa patte 21 et de tenir à jour un registre interne dont la valeur sera le reflet du nombre d'impulsions d'horloge comptées pendant tout le temps que le condensateur aura mis à se charger, et donc sera le reflet de la position du potentiomètre, qui conditionne le temps de chargement du condensateur. A noter que la sortie Q du 74ls221 ne fournit pas les signaux d'horloge à mème de faire compter le CTC, mais valide le passage de l'horloge système vers le CTC via la porte NON-ET 74ls00.

Voilà, ça n'est pas compliqué. Encore faut-il se donner la peine de comprendre un peu le fonctionnement avant de se lancer dans une modification hasardeuse!

Que m'a-t-il fallu faire pour 'rattraper' le coup? C'est assez simple en fait. Puisque je ne pouvais pas augmenter la résistance de potentiomètre de 10KOhms à 100KOhms, il suffisait de multiplier la valeur de condensateur C77 par 10. J'ai donc placé deux condensateurs de 3200pF en parallèle entre les pattes 14 et 15 du 74ls221, pour une valeur finale de 6400pF + les 680pF d'origine.


Je triche un peu, ça n'est pas si simple que cela parce qu'il faut vérifier que les valeurs des composants restent dans les possibilités du 74ls221. Chance, c'était le cas!

Pour compléter, j'ai aussi du changer la résistance en parallèle sur le potentiomètre. Elle est censée diviser la valeur finale du potentiomètre de façon non linéaire. De 500KOhms à l'origine, je l'ai fait passer à 50KOhms (valeur divisée par 10 par rapport à l'origine, comme celle du potentiomètre). Dans les faits, j'ai placé deux résistances en série pour un total de 55KOhms. Les 10% supplémentaires me permettent d'atteindre la pleine échelle à coup sûr. A noter que la progression résultante du potentiomètre avec cette résistance en parallèle n'est donc pas linéaire. L'idée étant de linéariser la progression "apparente" de la charge du condensateur, sachant que la courbe de charge d'un condensateur, justement, est exponentielle et non pas linéaire. J'ai aussi du rajouter une résistance ajustable en parallèle de celle de 2KOhms d'origine pour régler plus facilement le zéro du potentiomètre. Une fois ces opérations réalisés, j'obtiens des créneaux de charge de 2,5% à 18,5% par période me permettant d'atteindre la valeur 0 pour le réglage du volume, et la valeur maximale de 240 pour le tempo par exemple.

Potentiomètre en butée à gauche.

Potentiomètre en butée à droite.
Les modifications effectuées, j'ai remonté la machine et ai procédé aux tests finaux en écoutant pour la première fois cette boite à rythmes :



J'ai passé l'OS de cette Drumulator à la version 3, avec la prise en charge de la liaison M.I.D.I. entrante. Il ne me reste plus qu'à mettre en place la petite interface M.I.D.I. standard d'entrée. A moins que j'en profite pour y implémenter un module de conversion de ma nouvelle interface M.I.D.I.

Mais pour l'heure, je remonte l'Emulator I que j'ai acquis il y a aussi un an. Fonctionnel, mais qui m'a généré une superbe fumée âcre de condensateurs quelques minutes après sa mise en marche. Je me dis que cet Emu 1 sera le parfait compagnon de cette Drumulator!

mercredi 26 juillet 2017

Micromite la boite à outils....

Est-il possible d'effectuer des tests sur différents composants, qu'ils soient équipés de bus série I2c ou SPI, encore plus facilement qu'avec une carte Arduino?

La réponse est oui et tient en deux mots : Micromite et Basic.

Étonnamment, alors que l'environnement de développement Arduino à connu un succès énorme auprès des 'bricoleurs' divers et variés, des solutions alternatives comme Micromite ne sont jamais mentionnées. Est-ce du au fait que le langage de programmation utilisé est le Basic?

Micromite est basé sur des processeurs puissants de chez Microchip, en l’occurrence des circuits PI32MX. Un des circuits couramment utilisé est le PIC32MX170F256. Il s'agit d'un processeur en boîtier de type DIP qui permet la réalisation de cartes de développement très compactes et faciles à réaliser :


Quand même, ce 'petit' processeur fonctionne à 40MHz, possède 256Ko de flash et 64Ko de RAM. Micromite se sert de la Flash pour enregistrer de façon pérenne le programme en basic et propose plus de 50Ko restant en RAM pour le stockage de données 'volatiles'. Inutile de dire que cela permet de faire déjà beaucoup de choses.

Le Basic développé par Geoff Graham est compatible MMBasic, est très rapide et en est à la version 5.04.05 :

J'ai effectué la mise à jour en version 5.04.04 il y a à peine quelques semaines, je pourrais donc recommencer l'opération pour passer en version 4.04.05, disponible depuis quelques jours sur le site de Geoff : http://geoffg.net/micromite.html. Preuve que le suivi du projet est correctement effectué!

La carte que j'ai développé pour ce système permet d'y raccorder le programmateur PicKIT 3 :


Et donc d'effectuer très simplement la mise à jour du firware de l'interpréteur Basic.

Pourquoi évoquer ce type de système aujourd'hui? Tout simplement parce qu'avec l'engouement actuel pour le rétro-computing, il me semblait opportun de rappeler que nombre de micro-ordinateurs de la belle époque n'étaient programmable qu'en Basic. Avec des puissance qui n'avaient rien à voir avec ce que propose Micromite. Evidemment, ici il n'y a pas d'écran ou faire défiler de jolies animations. Non, ce type de système est plutôt prévu pour du contrôle/commande, et il le fait particulièrement bien. Noter que l'interpréteur connaît une instruction pour démarrer directement le programme Basic à la mise sous tension.

Si cela vous interpelle, je vous invite à aller sur le site de Geoff consulter le manuel de son Micromite. Les possibilités de cet interpréteur sont tout bonnement stupéfiantes! Toutes les ressources sont libres...

Enjoy!

mardi 25 juillet 2017

Intel Arduino 101

"Les emmerdes, ça vole toujours en escadrille", comme disait ce 'cher' Chirac. Tout dépend pour qui. Pour Intel, sans doute. Après avoir annoncé il y a à peine un mois la fin des cartes de développement Joule, Galileo et Edison, voici qu'arrive le tour de la carte au format Arduino, la 101 :


Comme l'indique cette annonce du site Hackaday, il semble que ce soit le clap de fin en ce qui concerne la tentative d'intrusion d'Intel dans le domaine des 'faiseurs', après avoir abandonné le petit mode prometteur des jeunes diplômés, avec les cartes Joule, Galileo et Edison. Charmant comme appellations, d'ailleurs. Mais que ce soit avec ces jeunes diplômés 'néo-nouveaux' (barbe de 15cm et mac-book pro chevillés au corps) ou les makers de tout poils, il semblerait que le loup ce soit fait éjecter de la bergerie. Ce n'est pas un mal.

Pourquoi en effet perdre son temps sur des architectures ultra propriétaires, absolument pas performantes et obsolètes car largement dépassées par d'autres solutions du marché.

Comme j'ai déjà eu l'occasion de le signaler, l'objectif d'Intel n'était pas de proposer quelque chose de viable, mais de détourner l'attention des développeurs de tous poils des solutions concurrentes suffisamment longtemps pour étouffer le phénomène. Pour être complet, il me semble important de signaler qu'il n'aura pas fallu attendre le débarquement d'Intel pour que le phénomène 'Makers' s’essouffle. De lui-même d'ailleurs. Mode des années 2010, le sujet est ailleurs aujourd'hui...

Et cela n'est pas un mal non plus. Un certain assainissement pourrait être le bienvenu, qui devrait permettre l'émergence d'une suite au phénomène, et notamment à Arduino. Pour l'instant je ne vois pas vraiment quoi que ce soit poindre le bout du nez, mais sait-on jamais...

jeudi 20 juillet 2017

Le projet Arbalet, suite...

Pour faire écho au billet précédent, voici un des sujets en cours qui progresse maintenant de façon plus'dynamique'. Petit rappel : Yoan Mollard m'a demandé de lui créer une carte Arduino adaptable directement sur une Raspberry Pi3. Cette carte joue le rôle d'interface entre la carte Pi3 et la série de LEDs installées dans la table Arbalet, voir cet article.


Par rapport à une carte Arduino de base, le projet utilise ici un processeur plus complet puisqu’il s'agit d'un ATmega328pb. Les périphériques supplémentaires de ce processeur par rapport a l'ATmega328p sont intéressants en ce sens qu'il devient possible de conserver la liaison série entre la carte Arduino et le PC de développement sans être obligé de déconnecter la carte compatible Arduino de la Pi3 à chaque besoin de téléversement. Le deuxième port série de ce 328pb est utilisé pour communiquer avec la Pi3. Faire autrement eût été extrêmement fastidieux en manipulations, à la longue.

Une Pi3 équipée de la carte compatible Arduino nommée ARPI.

Une autre différence concerne la bibliothèque de commande des LEDs. A la base, il s'agit de la bibliothèque Adafruit. Elle fonctionne très bien mais est visiblement quelque peu gourmande en mémoire RAM. Pour rappel, le 328p ou 328pb ne contiennent 'que' 2Ko de RAM. J'ai donc choisi la bibliothèque FastLED, qui fait référence en la matière. Par contre, j'ai du l'adapter aux nouvelles ressources utilisées sur ce projet. Comme toute bibliothèque pour Arduino, elle ne prend en compte que les cartes Arduino Uno de base. Le processeur 328pb n'étant pas reconnu, il m'a fallu 'agrémenter' cette bibliothèque des déclarations nécessaires.

Site fastled.io inaccessible le 20 juillet 2017!

Autre grosse différence, cette étude va être industrialisée. Jusqu’alors, je ne me souciais pas vraiment de ce type de situation car je gérais absolument toute la chaîne de fabrication et de montage des cartes. Devoir faire réaliser le projet par une entreprise extérieur demande donc quelques ressources complémentaires, et une certaine adaptation aux processus 'extérieurs'.

Il me restait à développer le logiciel de ce nouveau matériel, et donc à gérer la communication avec la Pi3 et les strips LEDs. Voilà qui est fait : 


J'ose une petite satisfaction personnelle ;-)

Update 25/07/2017 : Le premier jet de la version industrielle.


Les éléments semblent correctement réalisés. Sauf le connecteur de la Pi, sur la carte ARPI qui est placé du mauvais côté du circuit imprimé. Encore quelques précisions à fournir au sous-traitant, et un peu de travail 'manuel' pour extraire ce connecteur et le placer sur l'autre face.

Ça se précise :-)